Protection of Components based on
a Smart-Card Enhanced Security Module

Joaquin Garcia-Alfarg Sergio Castilld, Jordi Castella-Roéa
Guillermo Navarré, and Joan Borréll

DEIC-UAB, 08193 Bellaterra (Catalonia), Spain
Email: {jgarcia,scastillo,gnavarro,jborrell}@deicluas

DEIM-ETSE-URV, 43007 Tarragona (Catalonia), Spain
Email: jordi.castella@urv.net

Abstract. We present in this paper the use of a security mechanism wlénéme pro-
tection of network security components, suchFagwalls and Intrusion Detection Sys-
tems. Our approach consists of a kernel-based access contrbbchethich intercepts
and cancels forbidden system calls launched by a potewrtiabte attacker. This way,
even if the attacker gains administration permissions vélieot achieve her purpose.
To solve the administration constraints of our approachusea smart-card based au-
thentication mechanism for ensuring the administratat&ntity. Through the use of a
cryptographic protocol, the protection mechanism ver#igsinistrator’s actions before
holding her the indispensable privileges to manipulaterapmment. Otherwise, the ac-
cess control enforcement will come to its normal operatitfe.also show in this paper
an overview of the implementation of this mechanism on aaeteprototype, developed
for GNU/Linux systems, over thieinux Security Modules (LSM) framework.

1 Introduction

The protection of network security components, suckieawvalls and Intrusion De-
tection Systems, is a serious and important problem which must be solvedei@fise,
whenever a remote adversary manages to compromise thetgexlhese compo-
nents, she may obtain the control of the system itself. @onto many other elements
of a network, security components are almost always wonkitiyspecial privileges to
properly execute their tasks [6]. This situation is verglikto lead remote attackers to
acquire these privileges in an unauthorized manner. Ftanos, the existence of pro-
gramming errors within the code of these components, ticé ithanipulation of their
related resources (such as processes, filesystem, and,sar @vgen the increase of
privileges though operating system’s errors, are just adesmples regarding means
in which a remote adversary can bypass traditional secpoiigy controls.

In [4, 5] we presented an enhanced protection module inksgjiato the kernel
of an attack prevention system intended to intercept andetdorbidden system calls
launched by a remote attacker. Specifically, the mechaniesepted in [4, 5] prevents
a privilege escalation attack on the prevention systenf #tglrough an enhanced ac-
cess control scheme which handles the protection of thesyselements. This strat-
egy introduces, however, some administration constrasinise the administrators are

not able to throw system calls which may suppose a threatetgitbtected system.
To solve these constraints, we present in this paper andedewversion of our ap-

proach which includes a smart-card based authenticatiahamésm, which acts as a
reinforcement of the kernel-based access control. ThetNgeof this complementary
mechanism is twofold. First, it holds to the administratee indispensable privileges
to carry management and configuration activities just whenwerifies her identity

through a two-factor authentication mechanism. Seconal/atvs us to avoid those
attacks focused on getting the rights of the administragitty, such as dictionary-
based attacks or buffer overflows.

The rest of this paper is organized as follows. Section 2 samznes some related
works. Section 3 shows an overview of our protection stsat8gction 4 takes a closer
look at the development of the proposed mechanism. Secpoesents our smart-card
based authentication protocol intended to solve the adtnition constraints intro-
duced by the protection mechanism. An evaluation concgrttie efficiency of our

proposal is then presented in Section 6. Finally, Sectiologes the paper with a list
of conclusions.

2 Related Work

There are two main approaches to safely execute processespecial privileges on
modern operating systems. A first approach, as the one peelsenthis paper, is to
apply a kernel-based access control to the outcoming systéen A second approach
is the creation of restricted environments, in which thecpsses will be executed and
controlled outside the trusted system space.

Regarding the first approach, the proposals closest to ceitk@protection mech-
anisms presented in [9] and [11] for the creation of enharweeéss control mecha-
nisms integrated in the kernel of the GNU/Linux operatingtegn. The main goal
behind these two proposals is to reinforce the completesybly controlling the sys-
tem calls and ensuring which process or user does the sysiéand against what it
will be done. The ability to control the access to the resesialows to protect the se-
curity components and to avoid that nobody (including aackttr with administrator
privileges) can disable them.

Nevertheless, both approaches differ from ours in a numbemrys. First, and to
our best knowledge, neither [9] nor [11] do not address theagament of administra-
tion constraints, as our proposal does through the twaifactthentication mechanism
we present in Section 5. Second, our approach, entirelydbaiséheLinux Security
Modules (LSM) framework [13], guarantees the compatibility witrepious applica-
tions and kernel modules without the necessity of modificesti However, both [9]
and [11] require the rewriting of some features of the oaglrinux kernel to properly
work. This situation may force to recompile existing codel/an modules in order
to obtain the new security features. Although it exists a l-BAded prototype for the
approach presented in [9], it does not seem to be activelntaiaed for the current
Linux-2.6 kernel series.

Regarding the second approach, we find in [8] a protectiorhar@sm for the cre-
ation of restricted environments within Unix setups. Ththats in [8] present the use
of a special system call to restrict the access to a specéw @frthe file system. This
specific area is intended just for the processes that areiteander each restricted
environment. Then, this system call properly changes tbedwectory to the given
path. This way, the process remains in a safe space from itherot possible to es-
cape — even if the component is compromised, the whole systénemain safe since
the illicit activities are caught within the replicated filgstem. This proposal requires,
however, a replicated file system tree for each environniéece, the administrator
in charge of the system must reproduce the original file aystee to include, for
example, shared libraries or configuration files, and copyntko the new path. Other
disadvantage of this proposal is that it does not guarahieedrrect execution flow
of a process, i.e., the behavior of a process can be modifiatsing, for example,
a buffer overflow. Hence, the attacker can overwrite the gondition or logs files of
such a process by simply using an arbitrary code executiackat since these files
remain in the same environment of the protected securitypcment process.

Extended versions of the previous model, as the one presén{@], may also
offer support for access control to resources and guardmgategrity of the security
component’s resources. Nonetheless, these extendedspispip not protect from
vulnerabilities placed outside the trusted environmensiple bug in a privileged
service, or even the use of stolen passwords, may lead tkattfrom the external
environment to attack the component and its resources.

3 Our proposal

As introduced in Section 1, our main motivation is the protecof network security
components, such &&rewalls andintrusion Detection Systems, which, if successfully
attacked, are very likely to lead an intruder to get the adrmtf the whole system. This
problem leads to the necessity for introducing a proteati@chanism on the different
elements of each component, keeping with their protectimhraitigating — or even
eliminating — any attempt to attack or compromise the corepti® elements and their
operations. This way, even if an attacker compromises ttwrisg of the component,
she would not be able to achieve her purpose.

We consider the protection of the elements carried by thedkesf the operat-
ing system as a proper solution for such a protection. Rinst,protection at kernel
level avoids that potentially dangerous system calls ,(&ikjing a process) could be
produced from one element against another one. This pianeistachieved by incor-
porating an access control mechanism into the kernel sysafim This way, one may
allow or deny a system call based on several criteria — sucheaglentifier of the
process making the call, some parameters of the given ¢all;Tee kernel's access
control allows to eliminate the notion of trust associategtivileged users, delegat-
ing the authorization for the execution of a given systenh toathe internal access
control mechanisms. In addition, and contrary to other @pghnes, it provides a uni-

fied solution, avoiding the implementation of different sifie mechanisms for each
component. This mechanism allows us, moreover, to enftreeompartimentaliza-
tion principle [12]. This principle is based in the segméintaof a system, so several
elements can be protected independently one from anothér.efsures that even if
one of the elements is compromised, the rest of them cantepera trusted way.

In our case, several elements from each component are egegsiprocesses. By
specifying the proper permission based on the process IRawdimit the interaction
between these elements of the component. If an intrudes tadetrol of a process
associated to a given component (through a buffer overflomgxample), she will be
limited to make the system call for this given process.

It is not always possible, however, to achieve a completepaddence between
the elements. There is a need to determine which system roalsbe considered
as a threat when launched against an element from the compdrtés requires a
meticulous study of each one of the system calls providedh&kéernel, and how they
can be misused. On the other hand, we have to define the accesd cules for each
one of these system calls. For our approach, we proposeltbeifty three protection
levels to classify the system calls: (1) critical processtgtion; (2) communication
mechanisms protection; and (3) protection of files asseditd the elements.

The first level of protection (critical processes) comgiaetions that can cancel
the proper execution of the processes associated to a cempaither by interac-
tion over them by signals, or the manipulation of the memggcs. Some examples
are: execution of a new application already in memory, maatpn of the address
space and process traces, and so on. The second level (cicatimmmechanisms
protection) includes the protection of all those procesbas allows an attacker to
modify, generate or eliminate any kind of messages exclihbggveen component’s
elements. Finally, the third level of protection (proteatiof files associated to the ele-
ments) takes into account all those actions that can mafiiaddress the set of files
used by the elements of the component, such as executalslenfiguration files.

4 Prototype Implementation

In this section we outline the current implementation of SRIACOP (which stands
for Smart Card Enhanced Linux Security Module for Component Protection). In accor-
dance with the protection scheme proposed in Section 3ngists of a kernel-based
access control mechanism, and its development has beenoden¢helLinux Secu-
rity Modules (LSM) framework for GNU/Linux systems [13]. The LSM framework
does not consist of a single specific access control mechaitistead it provides a
generic framework, which can accommodate several appesadhsupplies several
hooks (i.e., interception points) across the kernel thatlE used to implement dif-
ferent access control strategies. Such hooksTasik:hooks, Program Loading Hooks,
File systems Hooks andNetwork hooks.

These LSM hooks, can be used to provide protection at the tekels pointed
out above. Furthermore, LSM adds a set of benefits to our mmaation. First, it

introduces a minimum load to the system when comparing ietaéds without LSM,
and does not interfere with the detection and reaction gs&se(cf. Section 6). Second,
the access control mechanism can be composed in the systarmadule, without
having to recompile the kernel. And third, it provides a haggree of flexibility and
portability to our implementation when compared to othevpmsals for the Linux
kernel, such as [9] and [11], where the implementation meguihe modification of
some features of the original Linux-2.6 kernel series.

The LSM interface provides an abstraction, which allowsrttaglules to mediate
between the users and the internal objects from the opgrajistem kernel. To this
effect, before accessing the internal object, the hook tladl function provided by the
module and which will be responsible to allow or deny the asc@his can be seen
in Figure 1. There, a module registers the function to makeeglc over thenodes of
the file system. At the same time, LSM allows to keepdiseretionary access control
(DAC) provided by the kernel Linux, by standing between tigcigttionary control
and the object itself. This way, if a user does not have peions in relation to a
given file, the DAC of the operating system will not allow trezass and no call to the
function registered by the LSM will be made. This architeetteduces the load of the
system when compared to an access control check centralizied operating system
call interface, which always gets used for all the systerscal

User Level process] User space

,,,,l ,,,,,,,,,,,,,,

open system call] Kernel space

look up inode

error checks

DAC checks LSM Module Policy Engir

Examine context.
OK it vt 1o _
LSM hook Ose":g‘rﬁ;" Does request pass polic
Grant or deny.

access inode

i

Fig. 1. Linux Security Modules (LSM) Hooks.

The component’s elements will be allowed to make operatarig permitted to
the system administrator — such as packet filtering, pramesgplication cancellation,
etc. This implies that the system processes associatedhaetament will be executed
by the administrator —i.e., root user in Unix systems. Orcthrary, if we associate

the processes to a non privileged user, the discretionagsaccontrol of Linux will
not allow the execution of some specific calls.

The internal access control mechanisms at the kernel isibiagke process iden-
tifier (PID) that makes the system call, which will be asstemato a specific element.
Each function registered by a LSM module, determines wharhponent is making
the call from the PID of the associated process. It thenjepghe access control con-
straints taking also into account the parameters of thesysall. Thus, for example,
a given element can access its own configuration files butordtguration files from
other elements.

An important issue in the implementation is the adminigirabf the access con-
trol mechanisms and the management of each one of the elemenpointed out in
previous sections, the administrators should not be akiteréov a system call, which
may suppose a threat to the component. This prevents awdéntdoing any harm to
the component even if she could scale her privileges to tharastrator ones. This
contrasts with the administration of the component, siif@ administrator can not
interact with the elements of the component, she will not lble & carry out any
management or configuration process and activities.

To solve this hazard, we propose a smart-card based awiwoi mechanism.
Specifically, we use the functionality of a smart-card fosung the administrator’s
identity. Through the use of an authentication protoca, ltSM module verifies ad-
ministrator’s actions before holding her the indispensatlvileges to manipulate the
component. Otherwise, the access control enforcementaritle to its normal opera-
tion. In the following section, a detailed description o€k mechanism is given.

5 Smart-Card Based Authentication Mechanism

Traditional user authentication, also known as singlésfaauthentication, relies on
user’'s knowledge of some secret — for instance, a passwoadRIN. Then, using

this knowledge as the only requirement, the user may prooidantity. Neverthe-

less, single-factor authentication is not secure enoughe—ekistence of password
attacks, man-in-the middle techniques, etc., is a proohaf. tA two-factor authenti-

cation mechanism, on the other hand, solves most of thesdepne. Two-factor au-

thentication mechanisms require to prove both the knovdexfgsome secret and the
possession of some characteristic. This characterist&t fmiunique, and not easily
replicable (e.g., a smart-card).

Therefore, to better assure the administrator’s identitpur protection scheme,
we propose the use of a two-factor authentication mechabised on the crypto-
graphic functions of a smart-card. This mechanism is irddrfdr authenticating the
administrator to the LSM modules and holds with the follogviequirements:

— The actions must be authorized by the use of a smart-card;

— The smart-card only authorizes one action iff the PIN isecir

— The LSM module only authorizes the action iff the smart-carsponse is valid,
i.e., the cryptographic operation is correct.

According with these requirements, just when the smad-aconnected to the sys-
tem, and the authentication protocol’s result is satisfgcthe administrator is able to
hold the indispensable privileges to manipulate the nodeth@ contrary, when the
device is retired or the authentication protocol fails, #teess control enforcement,
presented in Section 4, comes to its normal operation.

5.1 Protocol Description

We give in the following a detailed description of the crygriaphic protocol that leads
our smart-card based authentication mechanism. Let u§§ tkatithe cryptographic
engine of such a smart-card is capable of performing seegrptographic functions,
such as symmetric key generation, symmetric cryptogragigierithms execution, etc.

Protocol 1

1. The system administrator opens a new console and she requests an action X. It is
assumed that X must be authorized by using the smart-card,;

2. The module receives the request from the console and does the following steps:
(&) Open a connection to the smart-card reader device;
(b) Print a message in the console, asking for the smart-card insertion to the
smart-card reader device;
(c) While the smart-card has not been inserted do;
i. Detect the insertion of the smart-card;
(d) Print a message in the console asking for the operation PIN;

3. The system administrator types the operation PIN in the keyboard;

4. The module does the following steps:
() Obtain the operation PIN,;
(b) Obtain a NONCE value at random;
(c) Compute the Message Authentication Code (MAC) of NONCE with the shared
key K, uy = MAC(K, NONCE);
(d) Executethe Procedure 1 inside the smart-card using the operation PIN and the
NONCE, and obtain a response u»;
(e) Print a message in the console to remove the smart-card from the smart-card
reader device;
() While the smart-card has not been removed do;
i. Detect the removing of the smart-card;
(9) if ue is ERRORthe LSV module does not authorize the action X;
(h) elsedo:
i. if 41 # peo the module does not authorize the action X;
ii. if uy = po the module authorizes the action X;

As we can see in Protocol 1, aperation PIN and oneadministration password
are used in our protocol. The operation PIN is at least si¥gigng. We use the
operation PIN in order to authorize the actions. On the dilagd, the administration
password is used to change the operation PIN and other nraeatigasks. The system
administrator has three consecutive chances to enter gmatagm PIN. In the third
chance if the smart-card receives an incorrect operatibrit®locks itself. The smart-
card only can be unblocked with the administration passwagain, there are three
chances to enter the correct administration passworde Kimart-card is blocked with
the administration password the smart-card becomes gseles

The security parameters of the LSM module are properlyaiiagd when it is
installed. The system administrator inserts a smart-aattieé reader device and the
cardlet application is downloaded to the smart-card. Oheeapplet has been down-
load and registered, the system administrator introdusesdministration password
and the operation PIN. The LSM module then sends the shased&’keit stores the
sharedK in a secure file, so the file can be read exclusively by the LSMute

Then, the smart-card and the LSM module share a secrekkéty Step 1 of such
a protocol, the system administrator requests an actioneth $M module which, in
turn, blocks the communication channel between the snaadi@ader and the LSM
module (cf. Step 2a). The data sent between the LSM modulé¢hansimart-card can
not be sniffed because the channel is blocked. The protoatisthe smart-card
remains in the smart-card reader when is not necessaryefnZst the LSM module
waits until the smart-card insertion, and in Step 4f the LShtinle does not proceed
since the smart-card has been removed.

In Step 3 the operation PIN travels in a secure way from théddayd because
the LSM module has blocked the channel between the keyboartha module itself.
Then, the LSM module sends a NONCE obtained at random andhaFStep 4d.
The smart-card returns a Message Authentication ChtRC) of the NONCE com-
puted with the shared kel . In the last Step, i.e., Step 4h, the LSM module verifies
whether the MAC has been properly computed.

Let us finally show the following procedure (cf. Procedurgallich is executed within
the smart-card to validate the operation PIN. If the opereflIN is correct, it computes
the MAC of NONCE with the shared kel .

Procedure 1 [PIN, NONCE]

1. Validate the operation PIN;
2. If the operation PIN is correct do:

(&) Compute the Message Authentication Code (MAC) of NONCE with the shared
key K, uo = MAC(K, NONCE);
(b) return po;
3. If the operation PIN is ho correct return ERROR;

5.2 Security Considerations

To ensure the proper execution of both Protocol 1 and Proedd{cf. Section 5.1), we
must consider the protection of the entities and the chanmeblved in such a process,
avoiding attacks like impersonation or channels data maation. The lack of ability
to avoid these attacks and their impact makes our proposséqgtion mechanism
usefulness. Regarding the different entities that takeipdne protocol, we suggest in
this section the following considerations.

First, the possible console attacks could be directed tditery executable file
and the console process in execution time. If this happensyarwrite of the exe-
cutable console’s file using malicious code could lead athtr to take the control of
the authentication process, giving her the possibilitydmplete the protocol and get
the control of the system — and even to steal the smart-cRitlls To eliminate this
attack, the LSM module guarantees that the binary file of timsale can not be over-
written by anybody (even the administrator), remainingpgaemissions as read-only.

Second, the binary executable of the administration censaiompiled in a static
fashion. This allows us to reduce the complexity of the priad@’'s console process,
since we do not need to consider extra tasks introduced bip#uing of shared li-
braries and its associated files. At the same time, it enaislés centralize and reduce
the failure points that could be used by an intruder to tantiperconsole’s process.
Thus, and to protect the process associated to the conseleSiM module controls
that each system call launched by some process can not berdaador the correct
execution flow of the console process, such as keyboard k#yrea cancellation, or
debugging process system calls.

Let us recall that the communication channels can not bepukated by any op-
ponent. To achieve this purpose, the LSM mediates betweenrytstem calls related
with the communication channels and the entities that tale within the protocol
(the LSM module, the smart-card, and the console process).

To conclude, and as pointed out in [2], the LSM module doesieetl to be directly
protected since we can assume the kernel environment astadrarea — since it is
mandatory for the kernel security model of our prototypgisrating system.

6 Evaluation

This section describes the performance evaluation of SM&BF for GNU/Linux
systems based on thénux Security Modules (LSM) framework.

We show the outcome of several tests steered towards megsioe penalty intro-
duced by the installation of SMARTCOP as a LSM module, overtbhrmal operation
of the system. We do not take into account in this evaluatiza performance penalty
during administrative tasks. That is, operations carrigchy the system administrator
making use of the authentication scheme presented in th@psesection.

The set of tests is based on the use of the Strace [1] tool andNtbench [10]
package. Strace is a debugging tool, which allows us to tfaeesystem calls made

after the execution of a given process. This can be used tpzarend evaluate the time
taken by these calls. On the other hand, LMbench is used torpemicrobenchmarks,
which are used to take more precise measures of the timefiakigie access, memory
access, etc.

The evaluation was carried out on a single machine with agl-Péntium M 1.4
GHz, with 512 MB of RAM memory and an IDE hard disc of 5400 rpnmming a
Debian GNU/Linux operating system and ext3 file system. Theative of these tests
is to compare the performance of the system using a Linug2 lernel without LSM
support against the performance of the same system and keétiné. SM support and
the SMARTCOP module loaded.

2.6.15 + % Overhead 2.6.15 + % Overhead
Test Type || 2.6.15 | smartcop | with smartcop Test Type || 2.6.15 | smartcop | with smartcop
null call || 0.255 0255 0% pipe || 1342 1338 0.2%
kill || 231.10 241.65 4.6% AF Unix || 1334 1320 1%
stat| 1.99 2.03 2% TCP || 1088 1078 0.9%
open/close|| 2.96 3.02 1.9% file read|| 1330 1308 1.6%
select T® || 18.63 18.86 1.2% mmap read|| 1480 1425 3.8%
sig inst 0.9 0.9 0% mem bcopy || 5278 5277 0.01%
sig handl| 1.85 1.88 0.1% mem bzero || 4548 4548 0%
fork proc || 95.61 96.52 0.9% mem read|| 25600 25590 0.03%
exec proc||100.50 103.86 3.3% mem write || 24888 24869 0.07%
shprae || 2227 2302 3.3%

Local communication bandwidth in MB/s

Process tests, time in useconds

2.6.15 + % Overhead

Test Type || 2.6.15 | smartcop ||with smartcop

OK file create|| 193 193 0%
OK file delete|| 489 489 0%
10K file create|| 175 176 0.5%
10K file delete|| 658 668 1.5%
mmap latency|| 2348 2348 0%
par mem 1.26 1.26 0%
page fault|| 0.974 0.981 0.8%

File and VM sytem latencies, time in gseconds

Fig. 2. Performance evaluation of SMARTCOP.

The results of the tests are shown in Figure 2. They are argdrnin three tables
depending on the three protection levels stated in Sectiéys & can be appreciated
in the results, the penalty introduced by SMARTCOP has amuni impact on the
performance of a standard GNU/Linux 2.6.15 system.

The first table Process tests) shows the latency in microseconds for a set of oper-
ations related to the execution of processes and systemstalh as process creation
throughfork(), fork()+exec() andsh(), process cancellation throuddil(), descriptor
waiting throughselect(), opening and closing files througipen()/close(), signal in-
stallation and management, etc.

This first category of tests shows that more than the 50% otdhts indicate
a performance penalty below 2%. For example, the procesgi@newith fork() is

scarcely penalized with a 0.9%. The same can be noticed émeps creation with
fork()+exec() andsh(), which have an approximate penalty of 3.3%. On the other hand
the higher performance penalty is presented by the pro@sskation through the
system calkill() with a 4.6%. This higher penalty is produced by the accessr@aon
verifications of SAMRTCOP at kernel level, during the idén#tion checks of the
process, system call parameters, etc.

The second set of tests shown in the second table of Figuresemt the bandwidth
of operations related to communication issues such asmgadiriting and copy of
memory sections througtead() and mmap(), Inter Process Communications (IPC)
using TCP, pipes and sockets of the Unix address farAly{nix sockets), etc. Again,
the results show a minimum penalty in the performance. Bidhse the greater penalty
(3.8% approx.) is found in the reading and summing of a filalweamemory mapping
mmap() interface.

Finally, the set of tests from the third table (Figure 2) shdine latency found in
operations related to file and memory manipulation. Thegoerénce penalty of the
system is also minimum. The greater penalty being introddmgethe file elimination
due to the verifications performed by SMARTCOP during th@eissed system calls.

7 Conclusion

In this paper we have presented an access control mechapésialyy suited for the
protection of network security components, suclriaewalls andlntrusion Detection
Systems. Whenever one of these components, or one of its elemergsiripromised
by an attacker, it may lead her to obtain the full control & tletwork. The protection
of these components is not easy, specially when dealingdisthibuted setups, made
up of different elements distributed over a complex netwdiike for example, the
attack prevention platform presented in [3].

The solution we provide in this paper proposes the proteafahe components
by making use of the LSM system in the Linux kernel over GNUIX systems.
The mechanism we have developed, called SMARTC&#u(t Card Enhanced Linux
Security Module for Component Protection), works by providing and enforcing access
control rules at system calls, and is based on a protectiafutaantegrated into the
operating system’s kernel, providing a high degree of maxityl and independence
between elements.

The use of LSM allows our protection system to be used in newpoments and
elements, by just considering its environment and its au#ons (regarding access
control). It reinforces the modularity of the system andvjiles an easy and generic
way to introduce new elements without having to consideh eamponent separately.
Thus, we consider that our proposal provides a high degrseatébility.

The introduction of new components provides a minimum perémce penalty,
because the LSM framework and the access control schemetdotmaluce an ex-
cessive computational complexity. We have measured thaltgeintroduced by the
use of SMARTCOP against the usual performance of the sydteenresults show the

minimum performance impact of SMARTCOP. To reinforce the&t@ction mechanism

itself, SMARTCOP provides a complementary authenticatieathod, based on smart-
cards. This additional enhancement is based both on a georatt-card PIN) and a
physical token (the smart-card itself). This way, we carv@né some logical attacks
(e.g., password forgery) against the protection mechapremposed in this paper.

For all these reasons, we can finally conclude that the eeldaaccess control
provided by SMARTCOP, and integrated inside the operatysgesn’s kernel, offers
a good degree of transparency to the administrator in chargkit does not interfere
directly with user space’s processes.

Acknowledgments

J. Garcia-Alfaro, S. Castillo, G. Navarro, and J. Borredl partially founded by the
Spanish Government projetitC2003-02041, and the Catalan Government grag03-
FI126. J. Castella-Roca is partly supported by the Spanish Govemhproject SEG-
2004-04352-C04-01.

References

1. W. Akkerman. Stracehttp://liacs.nl/~wi chert/strace/

2. M. Borchardt, C. Maziero, and E. Jamhour. An architectar@n-the-fly file integrity checking. In
Latin American Symposium on Dependable Computing, 117-126, Brazil, 2003.

3. J. Garcia, F. Autrel, J. Borrell, S. Castillo, F. Cuppeasd G. Navarro. Decentralized pub-
lish/subscribe system to prevent coordinated attacks leid eorrelation. In6th Int. Conf. on In-
formation and Communications Security, 223—-235, Spain, 2004.

4. J. Garcia, S. Castillo, G. Navarro, and J. Borrell. ACARSAccess Control Mechanism to Protect
the Components of an Attack Prevention System.Jdarnal of Computer Science and Network
Security, 5(11):87-94, November 2005.

5. J. Garcia, S. Castillo, G. Navarro, and J. Borrell. Me@ras for Attack Protection on a Prevention
Framework. I39th Annual IEEE International Carnahan Conference on Security Technology, 137—
140, Spain, October 2005.

6. D. Geer. Just How Secure Are Security ProdutE=E Computer, 37(6):14—16, June 2004.

7. A.Herzog and N. Shahmehri. Using the Java Sandbox forlRes@ontrol. In7th Nordic Workshop
on Secure IT Systems (NORDSEC 2002), Linkdpings universitet, Linkdping, Sweden, 2002.

8. P. Hope. Using Jails in FreeBSD for Fun and Profibgin; The Magazine of Usenix & Sage,
27(3):48-55, June 2002.

9. P. Loscocco and S. Smalley. Integrating Flexible SupfoorSecurity Policies into the Linux Oper-
ating System. Iri1th FREENIX Track: 2001 USENIX Annual Technical Conference, USA, 2001.

10. L. McWoy. LMbench, Portable Tools for Performance Arsédy In1996 USENIX Annual Technical
Conference, USA, 1996.

11. A. Ott. The Role Compatibility Security Model. [fih Nordic Workshop on Secure IT Systems,
Sweden, November 2002.

12. J. Viega, and G. McGrawBuilding Secure Software - How to Avoid Security Problems the Right
Way. Addison-Wesley, September 2002.

13. C. Wright, C. Cowan, S. Smalley, J. Morris, and G. Kroadrthhan. Linux Security Modules:
General Security Support for the Linux Kernel. Itth USENIX Security Symposium, USA, August
2002.

