
Protection of Components based on
a Smart-Card Enhanced Security Module

Joaquín García-Alfaro1 , Sergio Castillo1, Jordi Castellà-Roca2 ,
Guillermo Navarro1, and Joan Borrell1

DEIC-UAB, 08193 Bellaterra (Catalonia), Spain
Email: {jgarcia,scastillo,gnavarro,jborrell}@deic.uab.es

DEiM-ETSE-URV, 43007 Tarragona (Catalonia), Spain
Email: jordi.castella@urv.net

Abstract. We present in this paper the use of a security mechanism to handle the pro-
tection of network security components, such asFirewalls andIntrusion Detection Sys-
tems. Our approach consists of a kernel-based access control method which intercepts
and cancels forbidden system calls launched by a potential remote attacker. This way,
even if the attacker gains administration permissions, shewill not achieve her purpose.
To solve the administration constraints of our approach, weuse a smart-card based au-
thentication mechanism for ensuring the administrator’s identity. Through the use of a
cryptographic protocol, the protection mechanism verifiesadministrator’s actions before
holding her the indispensable privileges to manipulate a component. Otherwise, the ac-
cess control enforcement will come to its normal operation.We also show in this paper
an overview of the implementation of this mechanism on a research prototype, developed
for GNU/Linux systems, over theLinux Security Modules (LSM) framework.

1 Introduction

The protection of network security components, such asFirewalls andIntrusion De-
tection Systems, is a serious and important problem which must be solved. Otherwise,
whenever a remote adversary manages to compromise the security of these compo-
nents, she may obtain the control of the system itself. Contrary to many other elements
of a network, security components are almost always workingwith special privileges to
properly execute their tasks [6]. This situation is very likely to lead remote attackers to
acquire these privileges in an unauthorized manner. For instance, the existence of pro-
gramming errors within the code of these components, the illicit manipulation of their
related resources (such as processes, filesystem, and so on), or even the increase of
privileges though operating system’s errors, are just a fewexamples regarding means
in which a remote adversary can bypass traditional securitypolicy controls.

In [4, 5] we presented an enhanced protection module integrated into the kernel
of an attack prevention system intended to intercept and cancel forbidden system calls
launched by a remote attacker. Specifically, the mechanism presented in [4, 5] prevents
a privilege escalation attack on the prevention system itself – through an enhanced ac-
cess control scheme which handles the protection of the system’s elements. This strat-
egy introduces, however, some administration constraints, since the administrators are

not able to throw system calls which may suppose a threat to the protected system.
To solve these constraints, we present in this paper an extended version of our ap-
proach which includes a smart-card based authentication mechanism, which acts as a
reinforcement of the kernel-based access control. The objective of this complementary
mechanism is twofold. First, it holds to the administrator the indispensable privileges
to carry management and configuration activities just when she verifies her identity
through a two-factor authentication mechanism. Second, itallows us to avoid those
attacks focused on getting the rights of the administrativeentity, such as dictionary-
based attacks or buffer overflows.

The rest of this paper is organized as follows. Section 2 summarizes some related
works. Section 3 shows an overview of our protection strategy. Section 4 takes a closer
look at the development of the proposed mechanism. Section 5presents our smart-card
based authentication protocol intended to solve the administration constraints intro-
duced by the protection mechanism. An evaluation concerning the efficiency of our
proposal is then presented in Section 6. Finally, Section 7 closes the paper with a list
of conclusions.

2 Related Work

There are two main approaches to safely execute processes with special privileges on
modern operating systems. A first approach, as the one presented in this paper, is to
apply a kernel-based access control to the outcoming systemcalls. A second approach
is the creation of restricted environments, in which the processes will be executed and
controlled outside the trusted system space.

Regarding the first approach, the proposals closest to ours are the protection mech-
anisms presented in [9] and [11] for the creation of enhancedaccess control mecha-
nisms integrated in the kernel of the GNU/Linux operating system. The main goal
behind these two proposals is to reinforce the complete system by controlling the sys-
tem calls and ensuring which process or user does the system call and against what it
will be done. The ability to control the access to the resources allows to protect the se-
curity components and to avoid that nobody (including an attacker with administrator
privileges) can disable them.

Nevertheless, both approaches differ from ours in a number of ways. First, and to
our best knowledge, neither [9] nor [11] do not address the management of administra-
tion constraints, as our proposal does through the two-factor authentication mechanism
we present in Section 5. Second, our approach, entirely based on theLinux Security
Modules (LSM) framework [13], guarantees the compatibility with previous applica-
tions and kernel modules without the necessity of modifications. However, both [9]
and [11] require the rewriting of some features of the original Linux kernel to properly
work. This situation may force to recompile existing code and/or modules in order
to obtain the new security features. Although it exists a LSM-based prototype for the
approach presented in [9], it does not seem to be actively maintained for the current
Linux-2.6 kernel series.

Regarding the second approach, we find in [8] a protection mechanism for the cre-
ation of restricted environments within Unix setups. The authors in [8] present the use
of a special system call to restrict the access to a specific area of the file system. This
specific area is intended just for the processes that are executed under each restricted
environment. Then, this system call properly changes the root directory to the given
path. This way, the process remains in a safe space from whereit is not possible to es-
cape – even if the component is compromised, the whole systemwill remain safe since
the illicit activities are caught within the replicated filesystem. This proposal requires,
however, a replicated file system tree for each environment.Hence, the administrator
in charge of the system must reproduce the original file system tree to include, for
example, shared libraries or configuration files, and copy them to the new path. Other
disadvantage of this proposal is that it does not guarantee the correct execution flow
of a process, i.e., the behavior of a process can be modified byusing, for example,
a buffer overflow. Hence, the attacker can overwrite the configuration or logs files of
such a process by simply using an arbitrary code execution attack – since these files
remain in the same environment of the protected security component process.

Extended versions of the previous model, as the one presented in [7], may also
offer support for access control to resources and guaranteethe integrity of the security
component’s resources. Nonetheless, these extended proposals do not protect from
vulnerabilities placed outside the trusted environment. Asimple bug in a privileged
service, or even the use of stolen passwords, may lead the attacker from the external
environment to attack the component and its resources.

3 Our proposal

As introduced in Section 1, our main motivation is the protection of network security
components, such asFirewalls andIntrusion Detection Systems, which, if successfully
attacked, are very likely to lead an intruder to get the control of the whole system. This
problem leads to the necessity for introducing a protectionmechanism on the different
elements of each component, keeping with their protection and mitigating – or even
eliminating – any attempt to attack or compromise the component’s elements and their
operations. This way, even if an attacker compromises the security of the component,
she would not be able to achieve her purpose.

We consider the protection of the elements carried by the kernel of the operat-
ing system as a proper solution for such a protection. First,the protection at kernel
level avoids that potentially dangerous system calls (e.g., killing a process) could be
produced from one element against another one. This protection is achieved by incor-
porating an access control mechanism into the kernel systemcalls. This way, one may
allow or deny a system call based on several criteria – such asthe identifier of the
process making the call, some parameters of the given call, etc. The kernel’s access
control allows to eliminate the notion of trust associated to privileged users, delegat-
ing the authorization for the execution of a given system call to the internal access
control mechanisms. In addition, and contrary to other approaches, it provides a uni-

fied solution, avoiding the implementation of different specific mechanisms for each
component. This mechanism allows us, moreover, to enforce the compartimentaliza-
tion principle [12]. This principle is based in the segmentation of a system, so several
elements can be protected independently one from another. This ensures that even if
one of the elements is compromised, the rest of them can operate in a trusted way.

In our case, several elements from each component are executed as processes. By
specifying the proper permission based on the process ID, wecan limit the interaction
between these elements of the component. If an intruder takes control of a process
associated to a given component (through a buffer overflow, for example), she will be
limited to make the system call for this given process.

It is not always possible, however, to achieve a complete independence between
the elements. There is a need to determine which system callsmay be considered
as a threat when launched against an element from the component. This requires a
meticulous study of each one of the system calls provided by the kernel, and how they
can be misused. On the other hand, we have to define the access control rules for each
one of these system calls. For our approach, we propose the following three protection
levels to classify the system calls: (1) critical process protection; (2) communication
mechanisms protection; and (3) protection of files associated to the elements.

The first level of protection (critical processes) comprises actions that can cancel
the proper execution of the processes associated to a component, either by interac-
tion over them by signals, or the manipulation of the memory space. Some examples
are: execution of a new application already in memory, manipulation of the address
space and process traces, and so on. The second level (communication mechanisms
protection) includes the protection of all those processesthat allows an attacker to
modify, generate or eliminate any kind of messages exchanged between component’s
elements. Finally, the third level of protection (protection of files associated to the ele-
ments) takes into account all those actions that can maliciously address the set of files
used by the elements of the component, such as executable, orconfiguration files.

4 Prototype Implementation

In this section we outline the current implementation of SMARTCOP (which stands
for Smart Card Enhanced Linux Security Module for Component Protection). In accor-
dance with the protection scheme proposed in Section 3, it consists of a kernel-based
access control mechanism, and its development has been doneover theLinux Secu-
rity Modules (LSM) framework forGNU/Linux systems [13]. The LSM framework
does not consist of a single specific access control mechanism; instead it provides a
generic framework, which can accommodate several approaches. It supplies several
hooks (i.e., interception points) across the kernel that can be used to implement dif-
ferent access control strategies. Such hooks are:Task hooks, Program Loading Hooks,
File systems Hooks andNetwork hooks.

These LSM hooks, can be used to provide protection at the three levels pointed
out above. Furthermore, LSM adds a set of benefits to our implementation. First, it

introduces a minimum load to the system when comparing it to kernels without LSM,
and does not interfere with the detection and reaction processes (cf. Section 6). Second,
the access control mechanism can be composed in the system asa module, without
having to recompile the kernel. And third, it provides a highdegree of flexibility and
portability to our implementation when compared to other proposals for the Linux
kernel, such as [9] and [11], where the implementation requires the modification of
some features of the original Linux-2.6 kernel series.

The LSM interface provides an abstraction, which allows themodules to mediate
between the users and the internal objects from the operating system kernel. To this
effect, before accessing the internal object, the hook calls the function provided by the
module and which will be responsible to allow or deny the access. This can be seen
in Figure 1. There, a module registers the function to make a check over theinodes of
the file system. At the same time, LSM allows to keep thediscretionary access control
(DAC) provided by the kernel Linux, by standing between the discretionary control
and the object itself. This way, if a user does not have permissions in relation to a
given file, the DAC of the operating system will not allow the access and no call to the
function registered by the LSM will be made. This architecture reduces the load of the
system when compared to an access control check centralizedin the operating system
call interface, which always gets used for all the system calls.

error checks

DAC checks

User Level process

look up inode

open system call

access inode

Examine context.

Grant or deny.
Does request pass policy?LSM hook

Yes or No
"OK with you?"

Kernel space

User space

LSM Module Policy Engine

Fig. 1. Linux Security Modules (LSM) Hooks.

The component’s elements will be allowed to make operationsonly permitted to
the system administrator – such as packet filtering, processor application cancellation,
etc. This implies that the system processes associated to each element will be executed
by the administrator – i.e., root user in Unix systems. On thecontrary, if we associate

the processes to a non privileged user, the discretionary access control of Linux will
not allow the execution of some specific calls.

The internal access control mechanisms at the kernel is based in the process iden-
tifier (PID) that makes the system call, which will be associated to a specific element.
Each function registered by a LSM module, determines which component is making
the call from the PID of the associated process. It then, applies the access control con-
straints taking also into account the parameters of the system call. Thus, for example,
a given element can access its own configuration files but not configuration files from
other elements.

An important issue in the implementation is the administration of the access con-
trol mechanisms and the management of each one of the elements. As pointed out in
previous sections, the administrators should not be able tothrow a system call, which
may suppose a threat to the component. This prevents an intruder doing any harm to
the component even if she could scale her privileges to the administrator ones. This
contrasts with the administration of the component, since,if an administrator can not
interact with the elements of the component, she will not be able to carry out any
management or configuration process and activities.

To solve this hazard, we propose a smart-card based authentication mechanism.
Specifically, we use the functionality of a smart-card for ensuring the administrator’s
identity. Through the use of an authentication protocol, the LSM module verifies ad-
ministrator’s actions before holding her the indispensable privileges to manipulate the
component. Otherwise, the access control enforcement willcome to its normal opera-
tion. In the following section, a detailed description of such a mechanism is given.

5 Smart-Card Based Authentication Mechanism

Traditional user authentication, also known as single-factor authentication, relies on
user’s knowledge of some secret – for instance, a password ora PIN. Then, using
this knowledge as the only requirement, the user may proof his identity. Neverthe-
less, single-factor authentication is not secure enough – the existence of password
attacks, man-in-the middle techniques, etc., is a proof of that. A two-factor authenti-
cation mechanism, on the other hand, solves most of these problems. Two-factor au-
thentication mechanisms require to prove both the knowledge of some secret and the
possession of some characteristic. This characteristic must be unique, and not easily
replicable (e.g., a smart-card).

Therefore, to better assure the administrator’s identity in our protection scheme,
we propose the use of a two-factor authentication mechanismbased on the crypto-
graphic functions of a smart-card. This mechanism is intended for authenticating the
administrator to the LSM modules and holds with the following requirements:

– The actions must be authorized by the use of a smart-card;
– The smart-card only authorizes one action iff the PIN is correct;
– The LSM module only authorizes the action iff the smart-cardresponse is valid,

i.e., the cryptographic operation is correct.

According with these requirements, just when the smart-card is connected to the sys-
tem, and the authentication protocol’s result is satisfactory, the administrator is able to
hold the indispensable privileges to manipulate the node. On the contrary, when the
device is retired or the authentication protocol fails, theaccess control enforcement,
presented in Section 4, comes to its normal operation.

5.1 Protocol Description

We give in the following a detailed description of the cryptographic protocol that leads
our smart-card based authentication mechanism. Let us recall that the cryptographic
engine of such a smart-card is capable of performing severalcryptographic functions,
such as symmetric key generation, symmetric cryptographicalgorithms execution, etc.

Protocol 1

1. The system administrator opens a new console and she requests an action X. It is
assumed that X must be authorized by using the smart-card;

2. The module receives the request from the console and does the following steps:

(a) Open a connection to the smart-card reader device;
(b) Print a message in the console, asking for the smart-card insertion to the

smart-card reader device;
(c) While the smart-card has not been inserted do;

i. Detect the insertion of the smart-card;
(d) Print a message in the console asking for the operation PIN;

3. The system administrator types the operation PIN in the keyboard;

4. The module does the following steps:

(a) Obtain the operation PIN;
(b) Obtain a NONCE value at random;
(c) Compute the Message Authentication Code (MAC) of NONCE with the shared

key K, µ1 = MAC(K,NONCE);
(d) Execute the Procedure 1 inside the smart-card using the operation PIN and the

NONCE, and obtain a response µ2;
(e) Print a message in the console to remove the smart-card from the smart-card

reader device;
(f) While the smart-card has not been removed do;

i. Detect the removing of the smart-card;
(g) if µ2 is ERROR the LSM module does not authorize the action X;
(h) else do:

i. if µ1 6= µ2 the module does not authorize the action X;
ii. if µ1 = µ2 the module authorizes the action X;

As we can see in Protocol 1, anoperation PIN and oneadministration password
are used in our protocol. The operation PIN is at least six digits long. We use the
operation PIN in order to authorize the actions. On the otherhand, the administration
password is used to change the operation PIN and other management tasks. The system
administrator has three consecutive chances to enter the operation PIN. In the third
chance if the smart-card receives an incorrect operation PIN it blocks itself. The smart-
card only can be unblocked with the administration password. Again, there are three
chances to enter the correct administration password. If the smart-card is blocked with
the administration password the smart-card becomes useless.

The security parameters of the LSM module are properly initialized when it is
installed. The system administrator inserts a smart-card in the reader device and the
cardlet application is downloaded to the smart-card. Once the applet has been down-
load and registered, the system administrator introduces the administration password
and the operation PIN. The LSM module then sends the shared key K – it stores the
sharedK in a secure file, so the file can be read exclusively by the LSM module.

Then, the smart-card and the LSM module share a secret keyK. In Step 1 of such
a protocol, the system administrator requests an action to the LSM module which, in
turn, blocks the communication channel between the smart-card reader and the LSM
module (cf. Step 2a). The data sent between the LSM module andthe smart-card can
not be sniffed because the channel is blocked. The protocol avoids the smart-card
remains in the smart-card reader when is not necessary. In Step 2c, the LSM module
waits until the smart-card insertion, and in Step 4f the LSM module does not proceed
since the smart-card has been removed.

In Step 3 the operation PIN travels in a secure way from the keyboard because
the LSM module has blocked the channel between the keyboard and the module itself.
Then, the LSM module sends a NONCE obtained at random and the PIN in Step 4d.
The smart-card returns a Message Authentication Code (MAC) of the NONCE com-
puted with the shared keyK. In the last Step, i.e., Step 4h, the LSM module verifies
whether the MAC has been properly computed.

Let us finally show the following procedure (cf. Procedure 1), which is executed within
the smart-card to validate the operation PIN. If the operation PIN is correct, it computes
the MAC of NONCE with the shared keyK.

Procedure 1 [PIN , NONCE]

1. Validate the operation PIN;
2. If the operation PIN is correct do:

(a) Compute the Message Authentication Code (MAC) of NONCE with the shared
key K, µ2 = MAC(K,NONCE);

(b) return µ2;

3. If the operation PIN is no correct return ERROR;

5.2 Security Considerations

To ensure the proper execution of both Protocol 1 and Procedure 1 (cf. Section 5.1), we
must consider the protection of the entities and the channels involved in such a process,
avoiding attacks like impersonation or channels data manipulation. The lack of ability
to avoid these attacks and their impact makes our proposed protection mechanism
usefulness. Regarding the different entities that take part in the protocol, we suggest in
this section the following considerations.

First, the possible console attacks could be directed to thebinary executable file
and the console process in execution time. If this happens, an overwrite of the exe-
cutable console’s file using malicious code could lead an attacker to take the control of
the authentication process, giving her the possibility to complete the protocol and get
the control of the system – and even to steal the smart-card’sPIN. To eliminate this
attack, the LSM module guarantees that the binary file of the console can not be over-
written by anybody (even the administrator), remaining thepermissions as read-only.

Second, the binary executable of the administration console is compiled in a static
fashion. This allows us to reduce the complexity of the protection’s console process,
since we do not need to consider extra tasks introduced by theloading of shared li-
braries and its associated files. At the same time, it enablesus to centralize and reduce
the failure points that could be used by an intruder to tamperthe console’s process.
Thus, and to protect the process associated to the console, the LSM module controls
that each system call launched by some process can not be dangerous for the correct
execution flow of the console process, such as keyboard key capture, cancellation, or
debugging process system calls.

Let us recall that the communication channels can not be manipulated by any op-
ponent. To achieve this purpose, the LSM mediates between the system calls related
with the communication channels and the entities that take part within the protocol
(the LSM module, the smart-card, and the console process).

To conclude, and as pointed out in [2], the LSM module does notneed to be directly
protected since we can assume the kernel environment as a trusted area – since it is
mandatory for the kernel security model of our prototype’s operating system.

6 Evaluation

This section describes the performance evaluation of SMARTCOP for GNU/Linux
systems based on theLinux Security Modules (LSM) framework.

We show the outcome of several tests steered towards measuring the penalty intro-
duced by the installation of SMARTCOP as a LSM module, over the normal operation
of the system. We do not take into account in this evaluation,the performance penalty
during administrative tasks. That is, operations carried out by the system administrator
making use of the authentication scheme presented in the previous section.

The set of tests is based on the use of the Strace [1] tool and the LMbench [10]
package. Strace is a debugging tool, which allows us to tracethe system calls made

after the execution of a given process. This can be used to analyze and evaluate the time
taken by these calls. On the other hand, LMbench is used to perform microbenchmarks,
which are used to take more precise measures of the time takenfor file access, memory
access, etc.

The evaluation was carried out on a single machine with an Intel-Pentium M 1.4
GHz, with 512 MB of RAM memory and an IDE hard disc of 5400 rpm, running a
Debian GNU/Linux operating system and ext3 file system. The objective of these tests
is to compare the performance of the system using a Linux 2.6.15 kernel without LSM
support against the performance of the same system and kernel with LSM support and
the SMARTCOP module loaded.

smartcop with smartcop

null call 0.255 0.255 0%
 kill 231.10 241.65 4.6%

stat 1.99 2.03 2%
open/close 2.96 3.02 1.9%
select TCP 18.63 18.86 1.2%

sig inst 0.9 0.9 0%
sig handl 1.85 1.88 0.1%
fork proc 95.61 96.52 0.9%
exec proc 100.50 103.86 3.3%

sh proc 2227 2302 3.3%

 Process tests, time in µseconds

% Overhead
Test Type 2.6.15

% Overhead
Test Type 2.6.15 smartcop with smartcop

0K file create 193 193 0%
0K file delete 489 489 0%

10K file create 175 176 0.5%
10K file delete 658 668 1.5%
mmap latency 2348 2348 0%

par mem 1.26 1.26 0%
page fault 0.974 0.981 0.8%

File and VM sytem latencies, time in µseconds

% Overhead
Test Type 2.6.15 smartcop w

pipe 1342 1338 0.2%
AF Unix 1334 1320 1%

TCP 1088 1078 0.9%
 file read 1330 1308 1.6%

 mmap read 1480 1425 3.8%
 mem bcopy 5278 5277 0.01%

 mem bzero 4548 4548 0%
mem read 25600 25590 0.03%

mem write 24888 24869 0.07%

Local communication bandwidth in MB/s

ith smartcop
2.6.15 + 2.6.15 +

2.6.15 +

Fig. 2.Performance evaluation of SMARTCOP.

The results of the tests are shown in Figure 2. They are organized in three tables
depending on the three protection levels stated in Section 3. As it can be appreciated
in the results, the penalty introduced by SMARTCOP has a minimum impact on the
performance of a standard GNU/Linux 2.6.15 system.

The first table (Process tests) shows the latency in microseconds for a set of oper-
ations related to the execution of processes and system calls such as process creation
throughfork(), fork()+exec() andsh(), process cancellation throughkill(), descriptor
waiting throughselect(), opening and closing files throughopen()/close(), signal in-
stallation and management, etc.

This first category of tests shows that more than the 50% of thetests indicate
a performance penalty below 2%. For example, the process creation with fork() is

scarcely penalized with a 0.9%. The same can be noticed for process creation with
fork()+exec() andsh(), which have an approximate penalty of 3.3%. On the other hand,
the higher performance penalty is presented by the process cancellation through the
system callkill() with a 4.6%. This higher penalty is produced by the access control
verifications of SAMRTCOP at kernel level, during the identification checks of the
process, system call parameters, etc.

The second set of tests shown in the second table of Figure 2, present the bandwidth
of operations related to communication issues such as reading, writing and copy of
memory sections throughread() and mmap(), Inter Process Communications (IPC)
using TCP, pipes and sockets of the Unix address family (AF Unix sockets), etc. Again,
the results show a minimum penalty in the performance. In this case the greater penalty
(3.8% approx.) is found in the reading and summing of a file viathe memory mapping
mmap() interface.

Finally, the set of tests from the third table (Figure 2) shows the latency found in
operations related to file and memory manipulation. The performance penalty of the
system is also minimum. The greater penalty being introduced by the file elimination
due to the verifications performed by SMARTCOP during the associated system calls.

7 Conclusion

In this paper we have presented an access control mechanism specially suited for the
protection of network security components, such asFirewalls andIntrusion Detection
Systems. Whenever one of these components, or one of its elements, iscompromised
by an attacker, it may lead her to obtain the full control of the network. The protection
of these components is not easy, specially when dealing withdistributed setups, made
up of different elements distributed over a complex network. Like for example, the
attack prevention platform presented in [3].

The solution we provide in this paper proposes the protection of the components
by making use of the LSM system in the Linux kernel over GNU/Linux systems.
The mechanism we have developed, called SMARTCOP (Smart Card Enhanced Linux
Security Module for Component Protection), works by providing and enforcing access
control rules at system calls, and is based on a protection module integrated into the
operating system’s kernel, providing a high degree of modularity and independence
between elements.

The use of LSM allows our protection system to be used in new components and
elements, by just considering its environment and its interactions (regarding access
control). It reinforces the modularity of the system and provides an easy and generic
way to introduce new elements without having to consider each component separately.
Thus, we consider that our proposal provides a high degree ofscalability.

The introduction of new components provides a minimum performance penalty,
because the LSM framework and the access control scheme do not introduce an ex-
cessive computational complexity. We have measured the penalty introduced by the
use of SMARTCOP against the usual performance of the system.The results show the

minimum performance impact of SMARTCOP. To reinforce the protection mechanism
itself, SMARTCOP provides a complementary authenticationmethod, based on smart-
cards. This additional enhancement is based both on a secret(smart-card PIN) and a
physical token (the smart-card itself). This way, we can prevent some logical attacks
(e.g., password forgery) against the protection mechanismproposed in this paper.

For all these reasons, we can finally conclude that the enhanced access control
provided by SMARTCOP, and integrated inside the operating system’s kernel, offers
a good degree of transparency to the administrator in charge, and it does not interfere
directly with user space’s processes.

Acknowledgments

J. García-Alfaro, S. Castillo, G. Navarro, and J. Borrell are partially founded by the
Spanish Government projectTIC2003-02041, and the Catalan Government grant2003-
FI126. J. Castellà-Roca is partly supported by the Spanish Government project SEG-
2004-04352-C04-01.

References

1. W. Akkerman. Strace,http://liacs.nl/∼wichert/strace/
2. M. Borchardt, C. Maziero, and E. Jamhour. An architecturefor on-the-fly file integrity checking. In

Latin American Symposium on Dependable Computing, 117-126, Brazil, 2003.
3. J. García, F. Autrel, J. Borrell, S. Castillo, F. Cuppens,and G. Navarro. Decentralized pub-

lish/subscribe system to prevent coordinated attacks via alert correlation. In6th Int. Conf. on In-
formation and Communications Security, 223–235, Spain, 2004.

4. J. García, S. Castillo, G. Navarro, and J. Borrell. ACAPS:An Access Control Mechanism to Protect
the Components of an Attack Prevention System. InJournal of Computer Science and Network
Security, 5(11):87-94, November 2005.

5. J. García, S. Castillo, G. Navarro, and J. Borrell. Mechanisms for Attack Protection on a Prevention
Framework. In39th Annual IEEE International Carnahan Conference on Security Technology, 137–
140, Spain, October 2005.

6. D. Geer. Just How Secure Are Security Products?IEEE Computer, 37(6):14–16, June 2004.
7. A. Herzog and N. Shahmehri. Using the Java Sandbox for Resource Control. In7th Nordic Workshop

on Secure IT Systems (NORDSEC 2002), Linköpings universitet, Linköping, Sweden, 2002.
8. P. Hope. Using Jails in FreeBSD for Fun and Profit.Login; The Magazine of Usenix & Sage,

27(3):48–55, June 2002.
9. P. Loscocco and S. Smalley. Integrating Flexible Supportfor Security Policies into the Linux Oper-

ating System. In11th FREENIX Track: 2001 USENIX Annual Technical Conference, USA, 2001.
10. L. McVoy. LMbench, Portable Tools for Performance Analysis. In1996 USENIX Annual Technical

Conference, USA, 1996.
11. A. Ott. The Role Compatibility Security Model. In7th Nordic Workshop on Secure IT Systems,

Sweden, November 2002.
12. J. Viega, and G. McGraw.Building Secure Software - How to Avoid Security Problems the Right

Way. Addison-Wesley, September 2002.
13. C. Wright, C. Cowan, S. Smalley, J. Morris, and G. Kroah-Hartman. Linux Security Modules:

General Security Support for the Linux Kernel. In11th USENIX Security Symposium, USA, August
2002.

