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Summary

In data privacy, record linkage is a well
known technique used to evaluate the dis-
closure risk of protected data. Mainly, the
idea is the linkage between records of differ-
ent databases, which make reference to the
same individuals. In this paper we intro-
duce a new parametrized variation of record
linkage relying on the Mahalanobis distance,
and a supervised learning method to deter-
mine the optimum simulated covariance ma-
trix for the linkage process. We evaluate
and compare our proposal with other stud-
ied parametrized and not parametrized vari-
ations of record linkage, such as weighted
mean or the Choquet integral, which deter-
mines the optimal fuzzy measure.

Keywords: data privacy, record linkage,
disclosure risk, Mahalanobis distance , fuzzy
measure, Choquet integral.

1 Introduction

Record linkage is the process of finding quickly and
accurately two or more records distributed in differ-
ent databases (or data sources in general) that make
reference to the same entity or individual. This term
was initially introduced in the public health area by
[9], when files of individual patients were brought to-
gether using name, date-of-birth and other informa-
tion. In the following years, this idea was developed
in [17, 16, 11], and nowadays it is a popular technique
used by statistical agencies, research communities and
corporations. Record linkage is one of the existing pre-
processing techniques used for data cleaning [15, 24],
and it is also used to control the quality of the data
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[2]. For example, data sources could be analyzed to
deal with dirty data like duplicate records [10], data
entry mistakes, transcription errors, lack of standards
for recording data fields, etc. Moreover, it is nowa-
days a popular technique employed to integrate dif-
ferent data sets that provide information regarding to
the same entities [6, 4].

In the last years, record linkage techniques have also
emerged in the data privacy context. Many govern-
ments agencies and companies need to collect and an-
alyze sensitive data about individuals. So, it is fun-
damental to provide security to statistical databases
against disclosure of confidential information. Privacy
preserving data mining [1] and Statistical Disclosure
Control [23] research on methods and tools for en-
suring the privacy of this data. Record linkage per-
mits the evaluation of disclosure risk of protected data
[19, 25]. By identifying links between the protected
data set and the original one, we can evaluate the
re-identification risk of the data by an intruder. For
example [7], it defines a score using the combination
of disclosure risk techniques, to evaluate the risk of
re-identification, and another method, which readily
quantified the information loss of a protected data set
using analytical measures (either generic or data-use-
specific).

In this paper we introduce a new distance based record
linkage for data privacy based on the Mahalanobis
distance [14]. It calculates distances taking into ac-
count the covariance among the variables. Moreover,
we present a supervised learning approach adapted to
this distance. It learns the covariance matrix of the
distance, so that the linkage between the two data sets
is maximized. The approach also gives us the relevance
of single variables and each pair of them in the linkage
process. In this paper we do a comparison between
the proposed method and others non-supervised, such
as arithmetic mean and the Mahalanobis distance [19]
and, also with other supervised variations based on
weighted mean [22] and the Choquet integral.
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The outline of this paper is as follows. In section 2,
we review some concepts needed in the rest of the pa-
per. In section 3, we describe the supervised learning
approach for distance based record linkage. The evalu-
ation of the method is introduced in section 4. Finally,
Section 5 presents the conclusions of the paper.

2 Preliminaries

In this section we review some ideas and definitions
that are needed to understand the rest of the paper.
We explain some ideas of the record linkage in the data
privacy area and how the data sets are.

A dataset X can be viewed as a matrix with n rows
(records) and V' columns (attributes), where each row
refers to a single individual. The attributes in a
dataset can be classified in two different categories:

o [dentifiers: attributes that can identify an indi-
vidual unambiguously, e.g., the passport number.

e Quasi-identifiers: attributes that are not able to
identify a single individual when they are used
alone. However, when combining several of them,
they can unequivocally identify it. Among the
quasi-identifier attributes, we distinguish between
confidential (X.) and non-confidential (X,,.), de-
pending on the kind of information that they
contain. An example of non-confidential quasi-
identifier attribute would be the zip code, while a
confidential quasi-identifier might be the salary.

Before releasing the data, a protection method p is
applied, leading to a protected dataset X’. This pro-
tection method will protect the non-confidential quasi-
identifiers, X/ . = p(X,.). To ensure the privacy the
identifiers are eiher removed or encrypted and the con-
fidential quasi-identifiers are not modified because are
the interesting for third parties. Then, everybody can
see the protected data set, X' = X/ || X.. This sce-
nario, first used in [7] to compare several protection
methods and then, adopted in other works like [25].

In data privacy, record linkage can be used to reiden-
tify individuals between the protected dataset and a
part or the whole original dataset as an evaluator of
disclosure risk. There are two extensively used ap-
proaches of record linkage to evaluate the disclosure
risk of protected data. The Probabilistic record
linkage (PRL) [12] and the Distance based record
linkage (DBRL) [18], which links each record a to
the closest record in b, by means of a distance function.

The work in this paper is focused on distance based
record linkage, which is further described below.

2.1 Distance-based record linkage

The main point in distance-based record linkage is in
the definition of a distance. Nevertheless, different dis-
tances can be defined, each obtaining different results.
Different distances have been considered and tested in
the literature. We review two of them that are used
in this work.

We will use ViX, ..., VX and V}¥' ..., V.Y to denote the
set of variables of file X and Y, respectively. Using
this notation, we express the values of each variable
of a record a in X as a = (V{¥(a),...,V,X(a)) and
of a record b in Y as b = (VY (b),..., V.Y (b)). VX
corresponds to the mean of the values of variable VX.

DBRL: The Euclidean distance is used for attribute-
standardized data. Accordingly, the distance be-

tween two records a and b is defined by:

s = (V@ -VE v -V
d(a, b) _Z( o‘(ViX) - o’(V,L_Y) )

=1

DBRLM: Distance based record linkage using the
Mahalanobis distance is as follows:

d(a,b)* = (a—b)S " (a— D)

where, ¥ = [Var(VX) + Var(VY) —
2Cov(VX, VY] and Var(VX) is the variance
of attributes VX, Var(VY) is the variance of at-
tributes V¥ and Cov(VX,VY) is the covariance
between attributes VX and VY. Note that if
the covariance matrix is the identity matrix, the
Mahalanobis distance reduces to the Euclidean.

3 Supervised learning for record
linkage

In this paper we focus on the utilization of
parametrized distances, which used together the su-
pervised learning they give us the best combination
of the parameters to obtain the best reidentification
between records of original and protected data. To
that end, we first introduce a parametrized version of
the Mahalanobis distance, an then, we present the su-
pervised method that we use to determining the best
weights, which in the Mahalanobis distance is a matrix
that simulates a covariance matrix.

3.1 A parametric distance for record linkage

It is well known that the multiplication of the Eu-
clidean distance by a constant will not change the re-
sults of any record linkage algorithm. Due to this, we
can express the distance DBRL given in Section 2.1 as
a weighted mean of the distances for the attributes.
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In a formal way, we redefine DBRL as follows:

dap? =3 (%Xm) ~VEi@) V) —Wi<b)>2

= o (V%) a(V;")

Now, defining

2 %XG—VTia %Yb—wib 2
sty = (LT ¥ gT0)

we can rewrite this expression as
d(a,b)* = AM(di(a,b)%,.... dn(a,b)?),

where AM is the arithmetic mean AM (cq, ..
> ci/n-

In general, any aggregation operator C [20] might be
used:

-7cn) =

d(a,b)? = C(dy(a,b)?,...,du(a,b)?).

From this definition, it is straightforward to consider
weighted versions of the DBRL. That is as follows.

Definition 1 Let p = (p1,...,pn) be a weighting vec-
tor (i.e., p; > 0 and Y, p; = 1). Then, the weighted
distance is defined as:

d*W My(a,b) = WM,(dy(a,b)?,...,d,(a,b)?),
:Cn> = Zipz‘ c G-

Another aggregation operator used is the Choquet in-
tegral (Definition 2). From a definitional point of
view, its main difference with the previous tool is its
use of fuzzy measures. In this way, this last opera-
tor expresses new information like redundancy, com-
plementariness, and interactions among the variables,
which are not reflected in weighted mean. Therefore,
tools that use fuzzy measures to represent background
knowledge permit the consideration of variables that
are not independent.

where WM, = (cq, ...

Definition 2 Let p be an unconstrained fuzzy measure
on the set of variables V, i.e. u(0) =0, u(V) =1, and
w(A) < u(B) when A C B for ACV, and BC V.
Then, the Choquet integral distance is defined as:

d*C1,(a,b) = CI,(d(a,b)?, ..., dn(a,b)?),

where CL,(c1,. .., cn) = D1y (Csiy — Cs(i—1))I(As(i))s
given that cg;y indicates a permutation of the indeves
s0 that 0 < cy1) < ... < Co(im1), Cs(0) = 0, and Ay =
{Cs(i)a sy Cs(n)}'

Now that we have briefly explained two existing
parametrized distances, we present a novel approach
relying on the Mahalanobis distance. To do so, firstly,
we have to compute the normalized difference between
two records @ € X and b € Y, in the following way:
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Vi¥(a) - VX v ) - VY
d"(a’b)z( 'a((x)/?‘)' - U((\)/.Y) )

Then, using it as an aggregation operator:

Definition 3 Let X be an nxn weighting matriz, which
stmulates a covariance matriz. Then, the Mahalanobis
distance is defined as:

d®MD(a,b) = MDs(d(a,b), ..., dn(a, b))

where M Ds(c1,...,cn) = (1, ... ) T8 e, ooy cp).

Comment that ¥, is a symmetric matrix. Then, the
diagonal of the matrix expresses the relevance of each
single variable in the reidentification process, whereas
the up or down triangle values of the matrix are the
weights that evaluates the interactions between each
pair of variables.

The interest of these variations is that we do not need
to assume that all the attributes are equally impor-
tant in the re-identification. This would be the case
if one of the attributes is a key-attribute, e.g. an at-
tribute where V;X = VY. In this case, the correspond-
ing weight would be assigned to one, and all the others
to zero. Such an approach would lead to 100% of re-
identifications. Note that in Definition 2 and 3 the
interaction of different variables is taken into account
by the fuzzy measure in contrast to Definition 1 which
it can only weight the variables individually.

Weighted
Mean
Choquet Mahalanobis

Distance

Integral

Figure 1: Distances classifications

Figure 1 shows the classification of the different dis-
tances that we have explained in this paper. As you
can see arithmetic mean is a special case of weighted
mean and at the same time this last is also a shared
special case between the Choquet integral and the Ma-
halanobis distance, more details in [21].

3.2 Determining the optimal weights

For the sake of simplicity, we presume that each record
of X, a; = (Vi¥(a;),...,Vy(a;)), is the protected
record of Y, b; = (VY (b;),..., VY (b;)). That is, files
are aligned. Then, if Vj(a;) represents the value of
the kth variable of the ithrecord, we will consider the
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sets of values d(Vi(a;), Vi(b;)) for all pairs of records
a; and b;.

Then, record ¢ is correctly linked using an ag-
gregation operator C when the aggregation of the
values d(Vi(a;),Vi(b;)) for all k is smaller than
d(Vi(a;), Vie(b)) for all 4 # j. That is,

C(d(Vi(ay), Vi(b:)), ..., d(Va(a;), Va(b:))) < (1)
C(d(vl (ai)v Vi (b]))v L) d(vn(az)a Vn(bj)))
for all ¢ £ j. Then, the optimal performance of record

linkage is achieved when this equation holds for all
records .

To formalize the optimization problem and permit
that the solution violates some equations we consider
the equation in blocks. We consider a block as the
set of equations concerning record i. Therefore, we
define a block as the set of all the distances between
one record of the original data and all the records of
the protected data. Therefore, we have as many K
as the number of rows of our original file. Besides,
we need a constant C' that multiplies K to avoid the
inconsistencies and satisfy the constraint.

The rationale of this approach is as follows. The
variable K indicates, for each block, if all the corre-
sponding constraints are accomplished (KX = 0) or not
(K =1). Then, we want to minimize the number of
blocks non compliant with the constraints. This way,
we can find the best weights that minimize the num-
ber of violations, or in other words, we can find the
weights that maximize the number of re-identifications
between the original and protected data. Therefore,
we have as many K as the number of rows of our orig-
inal file. Besides, we need a constant C' that multi-
plies K to avoid the inconsistencies and satisfy the
constraint.

Note that if for a record i, Equation (1) is violated
for a certain record j, then, it does not matter that
other records j also violate the same Equation for the
same record ¢. This is so because record ¢ will not be
re-identified.

Using these variables, K; and the constant C are de-
fined as follows:

(C(d(vl (a’i)7 Vi (bj))7 R d(Vn(az)> Vn(bj)))_
_(C(d(vl (ai)’ Vl(bl))7 tee d(Vn(az)> Vn(bz))) + CKz >0

for all ¢ # j. The constant C' is used to express the
minimum distance we require between the correct link
and the other incorrect links. The larger it is, the more
correct links are distinguished from incorrect links.

Using these constraints we can define the optimization

problem for a given aggregation operator C as:

N

Minimize Z K; (2)
i=1

Subject to :

N N
S > C@(Vi(ai), Viby)), - s d(Via(@i), Vi (b5))) =

—C(d(Vi(ai), Vi(bi)), .-, d(Vi(ai), Va(bi)))+
+CK; >0 (3)
K; € {0,1} (4)

where IV is the number of records, and n the number of
variables. This problem is a linear optimization prob-
lem with linear constraints and the (global) optimum
solution can be found with an optimization algorithm.

If N is the number of records, and n the number of
variables of the two data sets X and Y. We have
N terms of K; in the objective function, that is N
variables for Equation (2). The total number of con-
straints in the optimization problem is N2 4+ N. There
are N2 constraints from Equation (3), and N for Equa-
tion (4). Note that depending on the aggregation op-
erator C used, there will be more constraints in the
problem.

3.3 Learning the optimal weights using the
Mahalanobis distance

Once we have seen the generalized constraint problem
in the last section, we define the problem for the Ma-

halanobis distance d2M D introduced in Section 3.1.
The minimization problem can be expressed as:

N
Minimize » | K; (5)
=1
Subject to :
N N

D> > MDs(d(Vi(a:), Vi(by)), - -

i=1j=1

— MDs(d(Vi(a;), Vi(bs)),...,d(Vn(a;), Va(bi)))+

s d(VN(ai); Vi (bj)))7

+CK; >0 (6)
]\4D2(01,...,Cn)20 (7)
K; € {0,1} (8)

where N is the number of records, and n the number of
variables. Comment that due to the weighing matrix
is symmetric we only take into account n(n + 1)/2
weights, instead of n? that has the whole matrix.

The number of constraints is: N? for Equation (6); N2
for Equation (7) and N for Equation (8). While the
number constraints for the Choquet integral problem
is N2+ N+, (1)k+1and N2+ N +n—+1is the
number of constraints for weighted mean problem.

4 Evaluation
We have evaluated our proposal with different pro-

tected files using microaggregation[6], a well-known mi-
crodata protection method, which broadly speaking,
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provides privacy by means of clustering the data into
small clusters of size k, and then replacing the original
data by the centroid of their corresponding clusters.
This parameter k determines the protection level: the
greater the k, the greater the protection and at the
same time the greater the information loss.

We have considered files with the following protection
parameters:

e M/-33: 4 variables microaggregated in groups of
2 with k = 3.

e M/-28: 4 variables, first 2 variables with & = 2,
and last 2 with k = 8.

e M/-82: 4 variables, first 2 variables with & = 8,
and last 2 with k = 2.

e NM5-38: 5 variables, first 3 variables with k& = 3,
and last 2 with £ = 8.

e NM6-385: 6 variables, first 2 variables with k = 3,
next 2 variables with &k = 8, and last 2 with k = 5.

e NM6-853: 6 variables, first 2 variables with k = 8§,
next 2 variables with k£ = 5, and last 2 with k = 3.

For each case, we have protected 400 records randomly
selected from the Census dataset [5] from the Euro-
pean CASC project [3], which contains 1080 records
and 13 variables, and has been extensively used in
other works [13, 8, 26].

Note that in our experiments we apply different pro-
tection degrees to different variables of the same file.
The values used vary between 2 to 8, i.e., values be-
tween the lowest protection value and a good protec-
tion degree in accordance with [7]. This is especially
interesting when variables have different sensitivity.

d?AM | d°’MD | d*WM | d°CI d>MD*
Mj-33 0.84 0.94 0.955 0.9575 | 0.9675
M4-28 0.685 0.9 0.93 0.9375 | 0.9425
M4-82 0.71 0.9275 | 0.9425 | 0.9425 | 0.9525
M5-38 0.3975 | 0.8825 | 0.905 0.9125 | 0.9225
M6-385 | 0.78 0.985 0.9925 | 0.9975 | 0.9975
M6-853 | 0.8475 | 0.98 0.9875 | 0.9925 | 0.995

Table 1: Improvement in the linkage ratio.

Table 1 shows the linkage ratio between the stan-
dard record linkage method (d? AM); the Mahalanobis
distance (d?MD); two currently existing supervised
learning approaches: the weighted mean (d2W M) and
the Choquet integral (d?CT), which were described in
Section 3.2; and, finally, the new supervised approach
presented in this paper based on the Mahalanobis dis-
tance (d>M D*). The values in the table are the ratio

*This is the supervised learning approach using the Ma-
halanobis distance.
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determining the correctly identified records from the
total, so a ratio of 1 means a 100% re-identification.

As it can be appreciated, our proposed method
achieves an important improvement with respect to
the standard distance based record linkage. However,
the improvement with respect to the d2A/D and the
two other supervised approaches is relatively small, es-
pecially with d?CI. Although the difference between
methods d?CI and d?M D* is small, it is important
to bear in mind that the Choquet integral approach is
computationally more expensive and complex. This is
due to the number of constraints required in the op-
timization problem. This makes the proposed use of
the Mahalanobis distance more effective than the one
using the Choquet integral.

Moreover, we compare the covariance matrix used in
d’M D and the inverse matrix obtained by the super-
vised approach using Mahalanobis (d?M D*), which it
is supposed to be the same than the covariance matrix
or a scaled variation of it. However, when we compare
both matrices after their normalization, by means of
the Frobenius matrix normalization, the results ob-
tained shows that both matrices are different.

5 Conclusions

In data privacy and statistical disclosure control,
record linkage is used as a disclosure risk estimation
of the protected data. This estimation is based on the
links between records of the original and the protected
data.

In this paper we have introduced a distance based
record linkage. Our proposal uses a supervised learn-
ing approach relying on the Mahalanobis distance to
determine the optimal weighting matrix for the link-
age, which also provides information about the inter-
action between each pairs of variables. Furthermore,
we have evaluated this supervised learning with other
supervised and no supervised methods and we have
achieved the bests results, even when we have com-
pared with the Choquet integral approach using a
fuzzy measure.
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