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Abstract. In data privacy, record linkage is a well known technique to evaluate the dis-
closure risk of protected data. It is used to evaluate the number of linked records between
a data set and its protected version. In this paper we give an overview of the work that
we have been doing during the last months. We describe the development of a supervised
learning method for distance-based record linkage, which determines the optimum param-
eters for the linkage process. We also present an evaluation and a comparison between
three different alternatives of such method. They are based on the weighted mean, the
Choquet integral and a variation of the Mahalanobis distance and also with other standard
distances to evaluate the risk.

1 Introduction
Record linkage is the process of finding quickly and accurately two or more records dis-
tributed in different databases (or data sources in general) that make reference to the
same entity or individual. This term was initially introduced in the public health area
by [13], when files of individual patients were brought together using name, date-of-birth
and other information. In the following years, this idea was developed in [21, 20, 15], and
nowadays it is a popular technique used by statistical agencies, research communities and
corporations. Record linkage is one of the existing preprocessing techniques used for data
cleaning [19, 27], and it is also used to control the quality of the data [5]. For example, data
sources could be analyzed to deal with dirty data like duplicate records [14], data entry
mistakes, transcription errors, lack of standards for recording data fields, etc. Moreover,
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it is nowadays a popular technique employed to integrate different data sets that provide
information regarding to the same entities [10, 7].

In the last years, record linkage techniques have also emerged in the data privacy
context. Many governments agencies and companies need to collect and analyze sensitive
data about individuals. So, it is fundamental to provide security to statistical databases
against disclosure of confidential information. Privacy preserving data mining [4] and
Statistical Disclosure Control [26] research on methods and tools for ensuring the privacy
of these data. Record linkage permits the evaluation of disclosure risk of protected data
[23, 28]. By identifying links between the protected data set and the original one, we can
evaluate the re-identification risk of the data by an intruder. For example, [11] defines
a score using the combination of disclosure risk techniques, to evaluate the risk of re-
identification, and another method, which readily quantified the information loss of a
protected data set using analytical measures (either generic or data-use-specific).

In this paper we focus on distance-based record linkage. We give an overview of a
supervised learning approach developed for three different parametrized distances, the
weighted mean, the Choquet integral [9] and the Mahalanobis distance [18]. We show the
suitability of our proposals, testing it in the field of data privacy and comparing all the
developed methods with the currently standard methods to evaluate the disclosure risk.

The outline of this paper is as follows. In section 2, we review some concepts needed
in the rest of the paper. In section 3, we describe the supervised learning approach for
distance based record linkage with the three alternative parametrized distances. The
evaluation of the approach is introduced in section 4. Finally, Section 5 presents the
conclusions of the paper.

2 Record Linkage in Data Privacy
In data privacy, record linkage can be used to re-identify individuals from a protected
dataset. It serves as an evaluation of the protection method used by modeling the possible
attacks to be performed on the protected dataset.

A dataset X can be viewed as a matrix with n rows (records) and V columns (at-
tributes), where each row refers to a single individual. The attributes in a dataset can be
classified, depending on their capability to identify unique individuals, as follows:

• Identifiers: attributes that can be used to identify the individual unambiguously. A
typical example of identifier is the passport number.

• Quasi-identifiers: attributes that are not able to identify a single individual when
they are used alone, but that can unequivocally identify an individual when combin-
ing several of them. Among the quasi-identifier attributes, we distinguish between
confidential (Xc) and non-confidential (Xnc), depending on the kind of information
that they contain. An example of non-confidential quasi-identifier attribute would
be the zip code, while a confidential quasi-identifier might be the salary.

Before releasing the data, a protection method ρ is applied to the dataset X, leading to
a protected dataset Y . Indeed, we will assume the following typical scenario with respect
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to the protection method ρ: (i) identifier attributes in X are either removed or encrypted,
therefore we will write X = Xnc||Xc; (ii) confidential quasi-identifier attributes Xc are not
modified, and so we have Yc = Xc; (iii) the protection method itself is applied to non-
confidential quasi-identifier attributes, in order to preserve the privacy of the individuals
whose confidential data is being released. Therefore, we have Ync = ρ(Xnc) and so, Y =
ρ(Xnc)||Xc. This scenario, which was first used in [11] to compare several protection
methods, has also been adopted in other works like [23].

There are two extensively used approaches for record linkage to evaluate the disclosure
risk of protected data. The Probabilistic record linkage (PRL) [16] and the Distance
based record linkage (DBRL) [22], which links each record from dataset A to the closest
record in dataset B. The closest record is defined in terms of a distance function.

The work in this paper is focused on distance based record linkage.

2.1 Distance-Based Record Linkage

In this section we give the definition of two distances currently used as a record linkage
techniques in the data privacy field. The first one relies on the Euclidean distance and the
second on the Mahalanobis distance.

To do so we use V X
1 , . . . , V X

n and V Y
1 , . . . , V Y

n to denote the set of variables of file X
and Y , respectively. Using this notation, we express the values of each variable of a record
a in X as a = (V X

1 (a), . . . , V X
n (a)) and of a record b in Y as b = (V Y

1 (b), . . . , V Y
n (b)). V X

i

corresponds to the mean of the values of variable V X
i .

DBRL: The Euclidean distance is used for attribute-standardized data. Accordingly, the
distance between two records a and b is defined by:

d(a, b)2 =

n∑
i=1

(
V X
i (a)− V X

i

σ(V X
i )

−
V Y
i (b)− V Y

i

σ(V Y
i )

)2

(1)

DBRLM: Distance based record linkage using the Mahalanobis distance is as follows:

d(a, b)2 = (a− b)′Σ−1(a− b) (2)

where, Σ is the covariance matrix. Note that if the covariance matrix is the identity
matrix, the Mahalanobis distance reduces to the Euclidean.

3 Supervised Learning for Record Linkage
The idea of applying supervised learning with parametrized distances for record link-
age is to determine the best parameters for achieving the best possible number of linked
records. We deal with different parametrized distances, in this section we introduce three
approaches to determine the weights associated to each variable, and also their inter-
actions, depending on the complexity of the parametrized distance yielding an optimal
distance-based record linkage. Firstly, we present three different parametrized distances
with different number of parameters, i.e. the greater the number is, the better defined
is the problem, then, we define how to determine the optimal weights of a parametric
distance by means of an optimization problem and finally, we explain how to adapt the
general problem to determine the best parameters for each distance presented.
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3.1 Parametric Distances

There are lots of parametrized distances in the literature and most of them obtain different
results when are applied to the same problem. Therefore, we have focused on three different
very relevant types of parametric distances.

It is well known that the multiplication of the Euclidean distance by a constant will
not change the results of any record linkage algorithm. Due to this, we can express the
Euclidean distance as a weighted mean of the distances for the attributes.

Defining,

di(a, b)
2 =

(
V X
i (a)− V X

i

σ(V X
i )

−
V Y
i (b)− V Y

i

σ(V Y
i )

)2

(3)

we can rewrite, Equation 1 as

d(a, b)2 = AM(d1(a, b)2, . . . , dn(a, b)2),

where AM is the arithmetic mean AM(c1, . . . , cn) =
∑

i ci/n.
In general, any aggregation operator C [24] might be used:

d(a, b)2 = C(d1(a, b)2, . . . , dn(a, b)2).

From this definition, it is straightforward to consider weighted variations. We consider
three variations below.

Definition 1 Let p = (p1, . . . , pn) be a weighting vector (i.e., pi ≥ 0 and
∑

i pi = 1).
Then, the weighted distance is defined as:

d2WMp(a, b) = WMp(d1(a, b)2, . . . , dn(a, b)2),

where WMp = (c1, . . . , cn) =
∑

i pi · ci.
Another aggregation operator we have used is the Choquet integral (Definition 2).

From a definitional point of view, its main difference with the previous tool is the use
of fuzzy measures. Choquet integral and fuzzy measures permit to express information
like redundancy, complementariness, and interactions among the variables, which are not
reflected in the weighted mean. Therefore, tools that use fuzzy measures to represent
background knowledge permit the consideration of variables that are not independent.

Definition 2 Let µ be an unconstrained fuzzy measure on the set of variables V , i.e.
µ(∅) = 0, µ(V ) = 1, and µ(A) ≤ µ(B) when A ⊆ B for A ⊆ V , and B ⊆ V . Then, the
Choquet integral distance is defined as:

d2CIµ(a, b) = CIµ(d1(a, b)2, . . . , dn(a, b)2),

where CI is the Choquet integral, i.e., CIµ(c1, . . . , cn) =
∑n

i=1(cs(i)−cs(i−1))µ(As(i)), given
that cs(i) indicates a permutation of the indices so that 0 ≤ cs(1) ≤ . . . ≤ cs(i−1), cs(0) = 0,
and As(i) = {cs(i), . . . , cs(n)}.

The last approach relies on the Mahalanobis distance. To do so, firstly, we have to
compute the normalized difference between two records a ∈ X and b ∈ Y , with di(a, b)

4



(squared root of Equation 3), and then, use the Mahalanobis distance as an aggregation
operator:

Definition 3 Let Σ be an n × n weighting matrix, instead of a covariance matrix as
is used in Equation 2. Then, the Mahalanobis distance is defined as:

d2MD∗(a, b) = MDΣ(d1(a, b), ..., dn(a, b))

where MDΣ(c1, ..., cn) = (c1, ..., cn)TΣ−1(c1, ..., cn).
Note that Σ, is a symmetric matrix. Then, the diagonal of the matrix expresses the

relevance of each single variable in the reidentification process, whereas the up or down
triangle values of the matrix are the weights that evaluates the interactions between each
pair of variables.

The interest of these variations is that we do not need to assume that all the attributes
are equally important in the re-identification. This would be the case if one of the attributes
is a key-attribute, e.g. an attribute where V X

i = V Y
i . In this case, the corresponding

weight would be assigned to one, and all the others to zero. Such an approach would lead
to 100% of re-identifications. Note that in Definition 2 and 3 the interaction of different
variables is taken into account by the fuzzy measure, in contrast to Definition 1 which can
only weight the variables individually.

Figure 1: Distances classification

Figure 1 shows the classification of the different distances that we have explained. As
you can see arithmetic mean is a special case of weighted mean and at the same time
the weighted mean is also a shared special case between the Choquet integral and the
Mahalanobis distance. For more details see [25].

3.2 Determination of the optimal weights

For the sake of simplicity, we presume that each record of X, Xi = (a1, . . . , aN ), is the
protected record of Y , Yi = (b1, . . . , bN ). That is, files are aligned. Then, if Vk(ai)
represents the value of the kth variable of the ith record, we will consider the sets of
values d(Vk(ai), Vk(bj)) for all pairs of records ai and bj .

Then, record i is correctly linked using aggregation operator C when the aggrega-
tion of the values d(Vk(ai), Vk(bi)) for all k is smaller than the aggregation of the values
d(Vk(ai), Vk(bj)) for all i 6= j. I.e.,
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C(d(V1(ai), V1(bi)), . . . , d(Vn(ai), Vn(bi))) < C(d(V1(ai), V1(bj)), . . . , d(Vn(ai), Vn(bj))) (4)

for all i 6= j. Then, the optimal performance of record linkage is achieved when this
equation holds for all records i.

To formalize the optimization problem and permit that the solution violates some
equations we consider the equation in blocks. We consider a block as the set of equations
concerning record i. I.e. we define a block as the set of all the distances between one
record of the original data and all the records of the protected data.

The rationale of this approach is as follows. We consider a variable K which indicates,
for each block, if all the corresponding constraints are satisfied (K = 0) or not (K = 1).
Then, we want to minimize the number of blocks non compliant with the constraints.
This way, we can find the best weights that minimize the number of violations, or in other
words, we can find the weights that maximize the number of re-identifications between the
original and protected data. Therefore, we have so many K as the number of rows of our
original file. Besides, we need a constant C that multiplies K to avoid the inconsistencies
and satisfy the constraint.

Note that if for a record i, Equation (4) is violated for a certain record j, then, it does
not matter that other records j also violate the same Equation for the same record i. This
is so because record i will not be re-identified.

Using these variables, Ki and the constant C are defined as follows:

C(d(V1(ai), V1(bj)), . . . , d(Vn(ai), Vn(bj)))− C(d(V1(ai), V1(bi)), . . . , d(Vn(ai), Vn(bi))) + CKi > 0 (5)

for all i 6= j.
The constant C is used to express the minimum distance we require between the

correct link and the other incorrect links. The larger it is, the more the correct links are
distinguished from the incorrect links.

Using these constraints we can define the optimization problem for a given aggregation
operator C as:

Minimize

N∑
i=1

Ki (6)

Subject to :

N∑
i=1

N∑
j=1

C(d(V1(ai), V1(bj)), . . . , d(Vn(ai), Vn(bj)))−

− C(d(V1(ai), V1(bi)), . . . , d(Vn(ai), Vn(bi))) + CKi > 0 (7)

Ki ∈ {0, 1} (8)

Additional constraints according to C (9)

where N is the number of records, and n the number of variables. This problem is a
linear optimization problem with linear constraints and the (global) optimum solution
can be found with an optimization algorithm. More explicitly, it can be considered a
mixed integer linear problem (MILP), because it is dealing with integer and real-valued
variables in the objective function and the constraints, respectively. Note, that we only
have considered aggregation operators with real-valued weights.
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If N is the number of records, and n the number of variables of the two data sets
X and Y . We have N terms of Ki in the objective function, that is N variables for
Equation (6). The total number of constraints in the optimization problem is N2 + N .
There are N2 constraints from Equation (7), and N for Equation (8). Note that depending
on the aggregation operator C used, there will be more constraints in the problem.

3.2.1 Learning the Optimal Weights

Once the optimization problem is defined in general terms, we define in Table 1 the ad-
ditional constraints which are necessary to add for each specific aggregation operator
explained in Section 3.1. More details and deeper explanations can be found in [1, 2, 3].

d2WM d2CI d2MD*1

Additional
∑n

i=1 pi = 1 µ(∅) = 0
Constraints pi ≥ 0 µ(V ) = 1 MDΣ(c1, . . . , cn) ≥ 0

µ(A) ≤ µ(B) when A ⊆ B

Table 1: Additional Constraints for the three variations of the problem.

4 Evaluation
We have evaluated our proposal with different protected files using microaggregation[10],
a well-known microdata protection method, which broadly speaking, provides privacy by
means of clustering the data into small clusters of size k, and then replacing the original
data by the centroid of their corresponding clusters. This parameter k determines the
protection level: the greater the k, the greater the protection and at the same time the
greater the information loss.

We have considered files with the following protection parameters:

• M4-33 : 4 variables microaggregated in groups of 2 with k = 3.

• M4-28 : 4 variables, first 2 variables with k = 2, and last 2 with k = 8.

• M4-82 : 4 variables, first 2 variables with k = 8, and last 2 with k = 2.

• M5-38 : 5 variables, first 3 variables with k = 3, and last 2 with k = 8.

• M6-385 : 6 variables, first 2 with k = 3, next 2 with k = 8, and last 2 with k = 5.

• M6-853 : 6 variables, first 2 with k = 8, next 2 with k = 5, and last 2 with k = 3.

For each case, we have protected 400 records randomly selected from the Census
dataset [8] from the European CASC project [6], which contains 1080 records and 13
variables, and has been extensively used in other works [17, 12, 29].

Note that in our experiments we apply different protection degrees to different variables
of the same file. These vary between 2 to 8, i.e., values between the lowest protection value
and a good protection degree in accordance to [11]. This is especially interesting when
variables have different sensitivity.
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Table 2 shows the linkage ratio using the standard record linkage method (d2AM);
the Mahalanobis distance (d2MD); and the three supervised learning approaches: the
weighted mean (d2WM), the Choquet integral (d2CI) and finally the approach based on
the Mahalanobis distance (d2MD*) which were described in Section 3.2. The values in
the table are the ratio determining the correctly identified records from the total, so a
ratio of 1 means a 100% re-identification.

d2AM d2MD d2WM d2CI d2MD*1

M4-33 0.84 0.94 0.955 0.9575 0.9675
M4-28 0.685 0.9 0.93 0.9375 0.9425
M4-82 0.71 0.9275 0.9425 0.9425 0.9525
M5-38 0.3975 0.8825 0.905 0.9125 0.9225
M6-385 0.78 0.985 0.9925 0.9975 0.9975
M6-853 0.8475 0.98 0.9875 0.9925 0.995

Table 2: Improvement in the linkage ratio.

As it can be appreciated, our proposed methods achieve an important improvement
with respect to the standard distances based record linkage. However, the improvement
between the three supervised approaches is relatively small, especially between d2CI and
d2MD∗. Although the difference between methods d2CI and d2MD* is small, it is im-
portant to bear in mind that the Choquet integral approach is computationally more
expensive and complex. This is due to the number of constraints required in the optimiza-
tion problem. This makes the proposed use of the Mahalanobis distance more effective
than the one using the Choquet integral.

5 Conclusions
In data privacy and statistical disclosure control, record linkage is used as a disclosure risk
estimation of the protected data. This estimation is based on the links between records of
the original and the protected data.

In this paper we have introduced a supervised learning for distance based record
linkage. Our proposal uses a supervised learning approach relying on three different
parametrized distances to determine the optimal weights for the linkage. Moreover, these
weights supply information about the relevance of the data attributes and depending on
the approach used we obtain different accuracy types of information. Furthermore, we have
evaluated these supervised learning approaches obtaining better results than the standard
methods.
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